

Temperature Modelling in a Furnace

MISG 2023

Contents

- Introduction
- Problem Statement
- What is Pyrometallurgy?
- Physical Representation

Your Business Intuition. Our Scientific Insight.

We create innovative strategies and solutions and provide tools that enable evidence-based, data-driven business decisions that drive your business forward.

30 Years in business	> 33 Post-graduate degrees	We of
>52,000	200+	Adva
Products sold (ZA)	Delivered Projects	Finar Smar

Some of our clients:

We offer solutions for:

- Advanced Business Analytics
- Financial Engineering Solutions
- Smart Mining & Manufacturing
- **Digital Engineering**
- Research, Teaching & Learning

What is Pyrometallurgy?

- Extraction of metals from their natural mineral deposits
- Thermal treatment of ores and concentrates
- Bring about chemical and physical changes
- Recovery of valuable materials

Specifically, we will be considering a smelting process

Thermal reactions where products are in a molten phase

Problem Statement

The Challenge

- Pyrometallurgical conversion is a volatile process
- Running the furnace at the wrong temperature can cause an eruption or explosion
- Temperature is measured very infrequently

Proposed Solution

• Create a mathematical model that models the temperature of the bath in space and time

 $T \sim T(r, z, t)$

- Furnace model
- Physical components
 - Lance
 - Slag bath
 - Matte bath
 - Tap holes
 - Refractory layer
 - External heat exchangers

- Furnace model
- Physical components
 - Lance
 - Slag bath
 - Matte bath
 - Tap holes
 - Refractory layer
 - External heat exchangers

- Furnace model
- Physical components
 - Lance
 - Slag bath
 - Matte bath
 - Tap holes
 - Refractory layer
 - External heat exchangers

- Furnace model
- Physical components
 - Lance
 - Slag bath
 - Matte bath
 - Tap holes
 - Refractory layer
 - External heat exchangers

- Furnace model
- Physical components
 - Lance
 - Slag bath
 - Matte bath
 - Tap holes
 - Refractory layer
 - External heat exchangers

- Furnace model
- Physical components
 - Lance
 - Slag bath
 - Matte bath
 - Tap holes
 - Refractory layer
 - External heat exchangers

- Furnace model
- Physical components
 - Lance
 - Slag bath
 - Matte bath
 - Tap holes
 - Refractory layer
 - External heat exchangers

- Furnace model
- Process properties
 - Lance
 - Submerged in slag bath
 - Feeds air and fuel into process
 - Slag Bath
 - Well-mixed
 - Turbulent, chaotic
 - Chemical reactions
 - Matte Bath
 - Molten, but stationary

Problem Statement

The Challenge

- Pyrometallurgical conversion is a volatile process
- Running the furnace at the wrong temperature can cause an eruption or explosion
- Temperature is measured very infrequently

Proposed Solution

• Create a mathematical model that models the temperature of the bath in space and time

 $T \sim T(r, z, t)$

Thank you

• myname@optinum.co.za

Colours

#1972FB

Gradient Colours

Line, Logos and Offerings

Copyright 2023 Opti-Num Solutions (Pty) Ltd

Money/Finance Icons

Essential Icons

Arrows and User Icons

